The Case-Control Study as Data Missing by Design:
Estimating Risk Differences
Sholom Wacholder

There are advantages to viewing the case-control design as a
missing-data problem instead of as a sampling problem. In the
simplest setup, cases are those members of a population who
develop disease; controls can be a small random sample of the
large number who do not; and covariates, including exposures
and other important variables, are available only for cases and
controls and are assumed to be missing at random for the
remaining large fraction of the population. This approach
allows estimation of the joint distribution of all variables in the
population. Thus, when the size of the population is known,
analysis is not restricted to logistic and other multiplicative
intercept models. Methods based on this approach can obtain

estimates and confidence intervals for parameters representing
the effect of exposure on disease, with multivariate adjustment
for other factors. Thus, case-control data can be used to esti-
mate the risk difference, a parameter with great public health
value. The missing-data perspective offers an additional advan-
tage by linking the “study base principle” of control selection
with the statistical concept of “missing at random.” As an
illustration, I use a subset of data from a case-control study to
obtain estimares of the difference between annual risk of
bladder cancer for various levels of smoking and lifetime non-
smokers, adjusted for occupational exposure. (Epidemiology

1996,7:144-150)
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In essence, the analysis of a case-control study should
translate differences in exposure between cases and con-
trols into estimates of parameters that compare risk or
rate of disease. This translation requires estimation of
parameters of a prospective model of risk as a function of
exposure, despite sampling that is conditional on dis-
ease.! Cornfield? showed that the odds ratio, which can
be estimated from case-control data, could be used to
approximate the risk ratio, with its prospective interpre-
tation. The main line of thinking about the analysis of
case-control data has extended this idea.!”?-¢

The relative risk or the rate ratio has remained the
parameter of interest in case-control studies, despite
long-standing appreciation that exposure-specific rates
of disease can be estimated if the fractions of incident
cases and of noncases in the cohort selected as controls
are known.»>13 Several recent papers have incorpo-
rated the sampling from the cohort in developing the
analysis of case-control studies.!4-2°

If risks and risk differences can be estimated from many
case-control studies, why aren’t they? In part, statistical
theory and software are more developed for estimating
odds ratios and their standard errors. In part, the para-
digm of translating exposure odds ratios into disease odds

From the Biostatistics Branch, Division of Cancer Epidemiology and Genetics,
National Cancer Institute, EPN 403, 6130 Executive Boulevard, Bethesda, MD
20892-7368.

Submitted April 28, 1995; final version accepted September 15, 1995.

© 1996 by Epidemiology Resources Inc.

144

ratios still holds sway. The paradigm of the case-control
study as a cohort study with data missing at random may
encourage more flexible and more informative analysis.

The Case-Control Study as a Missing-Data
Problem

A case-control study can be seen simply as a study in a
cohort with some missing exposure data. The investiga-
tor studies controls, rather than everyone in the under-
lying cohort or study base, to learn about the distribution
of exposure in the whole cohort.?'?? Indeed, the case-
control data can be used to reconstruct the data from the
whole cohort with but one additional piece of informa-
tion—the crude disease rate, or, equivalently, when all
cases are identified, the total numbers of subjects at risk.
That is, case-control data can be recast as a missing-data
problem. Typically, the crude rate in the population or
the count of the denominator will be available when all
cases have been identified from a well-defined popula-
tion during a fixed period of time, as from a population-
based cancer registry such as the Surveillance, Epidemi-
ology and End Results (SEER) program.

This missing-data problem exhibits two unusual char-
acteristics: the fraction missing can be enormous, and
the “missingness” is intentional. By contrast, in most
study situations, investigators assiduously avoid or min-
imize missingness.

Statistical methods for handling missing data depend
on the mechanism that generated the missingness. Anal-
ysis restricted to units with complete data is generally
valid only under the strong assumption called missing
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completely at random (MCAR),? that the (sometimes
unknown) value of a variable for an individual is inde-
pendent of whether or not it is observed. Most of the
statistical work has been done under the milder assump-
tion called missing at random (MAR),? where the re-
quired independence of the value of the variable and
whether it is observed is relaxed to be conditional on the
values of a variable that is known for everyone; here, the
conditioning is on disease status. Handling missing data
that is generated by a mechanism that cannot be as-
sumed to be missing at random and is not well under-
stood remains problematic, as discussed by Vach and
Blettner?* for missing confounders.

The epidemiologist’s assumption of appropriate selec-
tion of cases and controls from the cohort or base is
equivalent to an assumption of missing at random. That
is, the epidemiologist assumes that values of covariates
for those who develop disease do not depend on whether
the person is included as a case in the study, and the
values of those who do not develop disease are assumed
to be independent of whether or not the person is
included as a control. Logistic regression for case-control
data with appropriately selected cases and controls yields
consistent estimates of the odds ratios,>'® even though
the missingness is at random. This is a remarkable ex-
ception to the general rule requiring missingness that is
completely at random for valid analysis using only com-
plete units; it applies only where the link {functional
form of the risk modeled by the covariates) is the odds,
or a transformation of the odds, such as the logit (loga-
rithm of the odds).’®? The approach developed here is
more general; it treats a case-control study as a missing-
at-random problem and allows estimation of additional
risk parameters, such as absolute risk or risk difference.

The missing-data approach also offers conceptual and
practical benefits. [t emphasizes the relation of a case-
control study with its underlying cohort and with the
hypothetical study that could have been done using the
entire cohort and exactly the same cases. It links the
epidemiologic literature about case-control studies with
the formal idea of data missing at random. The approach
makes clear the reldtion between the study base princi-
ple,2?2 one of the three underlying principles behind
control selection,? and missing at random,? thereby pro-
viding a theoretical framework to common epidemio-
logic practices. Finally, it offers a powerful tool to ad-
dress questions about the analysis of case-control studies,
particularly those with complex sampling.!®%°

Estimating the Risk Difference from a Case-
Control Study

Standard missing-data theory can be used to show that a
parameter that can be estimated from a cohort study also
can be estimated from a case-control study under the
missing-at-random assumption. This approach has been
used by Benichou and Wacholder!? to develop estima-
tors of the absolute risk of disease under a logistic model
when the study identifies all incident disease during a
fixed time interval in a population of known size. [ show
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below how the probability of disease itself, or transfor-
mations of the probability in addition to the logit, can be
modeled and estimated as a function of risk factors
collected in the case-control study.

What practical advantages does the risk-difference
parameter offer! First, it is the natural parameter for
public health interpretation.?® Second, it encourages a
realistic comparison of effects in strata with large differ-
ences in baseline risk, as in a study of differences in the
effect of alcohol on risk of cancer of the esophagus
between blacks and whites. Third, it allows the total
effect of a single risk factor to be evaluated across end-
points with different levels of risk. For example, evalu-
ation of the benefits and risks of hormone replacement
therapy for postmenopausal women requires consider-
ation of possible effects on risk of heart disease, breast
and endometrial cancer, and osteoporosis. Comparing
these effects using risk differences is much simpler than
on a relative scale. Fourth, the effects of a continuous
risk factor or the joint effects of several risk factors might
be better described by a risk-difference model. In this
paper, | outline how in some circumstances one can use
case-control data to estimate risk differences in a mul-
tivariate setting and how to obtain confidence intervals.

Theoretical Results

Weinberg and Wacholder!® use related ideas to justify
prospective analysis of case-control studies with discrete
covariates. A fully general theoretical result that incor-
porates continuous covariates, as do Prentice and Pyke,’
might be obtained using the approach of Wild.!” The
results of Weinberg and Wacholder'® are themselves
generalizations of those of Anderson* to include multi-
plicative intercept models,” that is, models with links that
are functions of the odds but do not extend to parame-
ters that are not dependent on the odds, such as the risk
difference. When the outcome is rare, the odds and the
probability itself are close, so results from modeling of
the odds are approximately equal to those from modeling
the probability.

The Missing-Data Paradigm for Case-Control
Studies

Every case-control study can be considered as arising
from a base or a cohort.? In the simplest situation, cases
from a “cumulative incidence”? study consist of every-
one in a cohort who develops disease during a fixed
period of time, and controls are a randomly selected
subset of the cohort, excluding the cases. Covariates are
collected from cases and controls; the data from the
other members of the cohort are missing by design. If the
controls have the same distribution of exposure as the
noncases in the population from which cases are drawn,
the study base criterion? is met, or the data are missing
at random. Thus, standard missing value methods can be
applied.” If the study base criterion is not met, the
missingness is not at random, and use of either standard
or missing-data analysis for a case-control study would
generally result in biased estimation of risk parameters.??
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THE LikeLIHOOD FUNCTION

Assume that in the population of size N, there are N,
individuals with D = 1, where diagnosis of disease dur-
ing the follow-up period is indicated by i = 1, and i = 0,
otherwise. Then n; cases and n, controls are sampled
without teplacement from among the N; and N dis-
eased and nondiseased subjects; covariate information is
obtained only from these 31, subjects. Denote the num-
bers of cases and controls with an observed discrete
covariate vector value of x as n,(x) and ny(x), respec-
tively. The full likelihood L for the entire cohott, in-
cluding those for whom disease status but not covariates
are known, can be factored via Bayes’ rule, Pr(x|D) =
Pr(D|x)Pr(x)/Pr(D), to show its dependence on the risk
model!"18;

L = {ILP(D = i)™} {I, ,Pr(x|D = i)~}
= {IIPe(D = i)™~ "HILPr(x)**} (1
{IL, Pr(D = i|(x)~}.

The extensions required for continuous variables are

developed by Wild.'?

Case-CONTROL STUDIES WITH A PRIMARY BASE

In a study with a primary base, or a “population-based
case-control study,” the investigator identifies all of the
cases developing during a specified time interval in a
fixed population. In fact, under the missing-at-random
assumption, the expected value of the sufficient statistic
for parameters of risk in the cohort (the sufficient statistic
contains all of the information in the data about the
parameter of interest; here, it is the table classifying all
members of the cohort jointly by disease and exposure
status®®) can be obtained; therefore, any parameter that
could be estimated from the full cohort can also be
estimated from a population-based case-control study.
Thus, missing-data methods can be used to estimate not
only absolute risk but parameters such as the risk ratio or
risk difference?®? from a model based on a nonlogistic
link*® through either a pseudo-likelihood or full-likeli-
hood® approach when the variables are discrete.

Often, the information required to exploit missing-at-
random methods is readily available. For instance, age-,
sex-, and race-specific counts of the numbers of subjects
at risk, that is, the denominators of vital statistics rates,
can be obtained from census data. In fact, this approach
can be seen as an extension of vital statistics modeling,
incorporating demographic covariates available for ev-
eryone, together with exposure covariates only collected
for cases and controls.!*-¥ The method may also be
useful even when the denominator counts are only ap-
proximate.

In a study with a secondary base,?? such as a hospi-
tal- or registry-based study,’! the base is implicitly de-
fined in reference to the mechanism used to collect
cases. But although hospital controls may be adequate
for estimating relative risk, estimation using the tech-
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niques described here requires enumeration of the co-
hort, which will usually not be possible.

EsTIMATION

Risk models with various links can be fit. Pseudo-likeli-
hood estimates can be obtained by distributing the cases
and controls with missing covariates into the exposure
cells proportionally to the empirical distributions of ob-
served cases and controls, respectively, and proceeding
as if the resulting table were the full cohort. The stan-
dard errors reported by a packaged program are too small,
however; appropriate standard errors can be obtained
from the “sandwich” variance estimator described for .
method 2 in section 93.3 of Benichou and Wacholder.!
Alternatively, the EM (Expectation Maximization) algo-
rithm® could be used to obtain maximum likelihood
estimates. As in the logistic case,® the E step assigns
subjects with missing covariates into cells in proportion
to the fitted values (in contrast to the observed values in
the pseudo-likelihood). The difference is that the M step
can fit the completed data using a link other than the
logit.?® The Newton-Raphson algorithm? generates max-
imum likelihood estimates by directly maximizing the
likelihood L from Eq 1. Standard errors can be obtained
by inverting the observed information matrix based on
the second derivative of the likelihood L.

Estimation is simpler when the link is a function of
the odds, and the numbers of diseased and nondiseased
persons in the cohort are known. For calculation of the
odds-difference model, I defined a generalized linear
model with a link that incorporates the ratio of sampling
fractions (proportions in the cohort included in the
analysis) for cases to controls in the program Gauss
(Aptech Systems, Kent, WA). The fitted probabilities
and the derivative of the link function depend on R, the
stratum-specific ratio of sampling fractions in cases and
controls, that is, the quotient of the fractions of incident
disease and nondiseased individuals in that stratum of
the cohort whose exposure information is used in the
analysis. The fitted probabilities p are calculated from
the linear predictor € (the vector of the sum of the
product of the regression variables and the estimated
regression coefficients) as p = €/(€ + 1/R). The deriv-
ative of the link is 1/[R(1 — p)]. Weinberg and
Sandler'?er426-9271432 ysed a slightly different approach to
fit an odds-difference model in GLIM (Numerical Algo-
rithms Group, Oxford, England); I specify R, in contrast
to Weinberg and Sandler,!® who were interested in the
joint effects of two factors rather than estimates of their
individual effects.

SimpLE HYPOTHETICAL EXAMPLE

A case-control study targets a specified race-sex-age stra-
tum in a study population specified both geographically
and temporally. The stratum consists of 100,000 persons;
all of the 20 cases that are incident during follow-up are
identified (Table 1). Exposure information is obtained
from the cases along with 20 controls drawn at random
from the stratum, and 10 cases and 5 controls are found
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TABLE 1. Hypothetical Example for Estimating Risk Difference, Accounting for All 100,000 Persons in the Stratum
In Stratum Exposed Unexposed
Total Observed  Missing by Design Total Observed  Inferred Total Observed  Inferred
Incident disease 20 20 0 10 10 10 10
No incident disease 99,980 20 99,960 24,995 5 24,990 74,985 15 74,970
Total 100,000 40 99,960 25,005 15 24990 74,995 25 74,970
Risk 20.0 40.0 133

to be exposed. There remain 99,960 (100,000 total ~ 20
cases — 20 controls) persons in the stratum for whom
exposure information is unknown. If the controls truly
are randomly drawn, then the exposure levels of these
99,960 persons are missing at random and can be ex-
pected to include 24,990 exposed and 74,970 unexposed.
These estimates can now yield estimates of the counts of
nondiseased subjects in the population at each level of
exposure in the stratum and, hence, estimate the differ-
ence in risk as [10/(24,990 + 5 + 10)] — [10/(74,970 +
15 + 10)] = (10/25,005) — (10/74,995) = 26.7 per
100,000 persons per yeatr.

When exposure is not obtained from all incident
cases, its distribution can be similarly extrapolated from
a set of cases who constitute a random sample of diseased
subjects. Generalization to cells formed by cross-classi-
fication of several discrete covariates is straightforward.

In this example, the pseudo-likelihood approach was
used for simplicity. In a more complex situation, when
the risk model is not saturated in parameters, the like-
lihood approach, which uses expected numbets of cases
and noncases based on the fitted model, rather than the
observed numbers, will yield different estimates.2

Data Example

METHODS

Analyses of data extracted from the National Bladder
Cancer Study*** (NBCS) are presented as examples.
Readers interested in the substantive results should con-
sult the published report.® In this study, all residents of
SEER catchment ateas diagnosed with bladder cancer in
1978 were eligible to be cases. Random digit dialing and
Health Care Financing Administration records were
used for selecting controls below 65 years of age and 65
years or older, tespectively. In addition, population
counts by age, race, and sex, used by SEER as denomi-
nators for incidence rates, were available. Cases and
controls who agreed to participate provided information
on several variables considered to be possible risk factors

for bladder cancer. For the analyses here, I consider only
a single stratum consisting of white men age 65-79 years
in the state of New Jersey. These analyses use data
presented in Table 2 to examine the effects of smoking
at four levels and of work in any occupation from a list
of those possibly related to bladder cancer.’

The risk-difference model uses the identity link so
that the probability itself, rather than a transformation
of the probability, is fit; thus, the model parameters for
covariates can represent differences in absolute risk?®
during a specified time interval. This example uses mod-
els of difference in annual risk of the form:

PrDIS=i,E=j)=a+ B+ v, (2)
where S = i, i = 0,1,2,3, means never-smoker, former
smoker, current light smoker, and current heavy smoker,
respectively, and E = j, j = 0,1, indicates occupational
exposure. In these models, B, = ¥, = 0. In a model of
the effects of smoking only, the parameter o is the risk at
the baseline (never-smokers), the 8, i = 1,2,3, are the
differences in annual risk between level i and level 0 of
smoking, and vy, = 0. In a model also including the effect
of occupational exposure, a is again the baseline risk,
this time referring to nonsmokers who are not occupa-
tionally exposed, and the B; and ¥, represent differences
in annual risk at S = i, i = 1,2,3, and E = 1 compared
with S = 0 and E = 0, respectively, with the level of the
other variable held fixed. Alternatives to Model 2 would
replace the probability on the left-hand side of Model 2
by an odds [p/(1 — p)], logarithmic, or logit (log[p/(1 —
p)]) transformation. Then, the Bs and vy would represent
differences in the odds or in the logarithm of the risk or
odds (the familiar “log-odds ratio”), respectively.

REesuLTS

Tables 3-5 display estimates of parameters from the
risk-difference, odds-difference, and odds ratio models.
Because the univariate model is saturated, identical es-

TABLE 2. Exposure and Smoking Status of White Men Age 65-79 Years in the State of New Jersey, from National Bladder

Cancer Study Data’+35

Smoking Status by Occupational Exposure

Yes No
Unknown
Exposures Never Former Light Heavy Never Former Light Heavy
Diseased 195 24 46 5 30 49 95 16 71
Nondiseased 90,441 94 125 14 41 90 152 20 71
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TABLE 3. Maximum Likelihood Estimates (X 10°) of
Baseline Risks and of Risk Differences for Annual Risk of
Bladder Cancer for White Men Age 65-79 Years in New
Jersey, from National Bladder Cancer Study Data*+%%
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TABLE 5. Estimates of Parameters of Model with Logit
Link for Annual Risk of Bladder Cancer for White Men Age
65-79 Years in New Jersey, from National Bladder Cancer
Study Data’435

a* B* B.* Bs* v*
Smoking only
Estimates 416. 117. 230. 525.
Standard errors 53. 79. 187. 138.
Smoking and occupation
Estimates 271. 106. 175. 487. 292.
Standard errors 55. 74. 177. 135. 72.

* As defined in Model 2 in the text.

timates are obtained from full- and pseudo-likelihood,?
the fitted values will be the same from any link, and the
parameter estimates and standard errors from a fit using
one link can be obtained from the estimates of another.
The pseudo-likelihood estimates (not shown) for the
two-variable model are similar to those from the full-
likelihood, as noted by Benichou and Wacholder!? for a
larger subset of the bladder cancer study. The estimates
from the odds-difference model are slightly larger than
from the risk-difference model, since an odds always
exceeds the corresponding probability.

Results from fitting the risk-difference (Model 2) in-
dicate that the annual risk of bladder cancer in heavy
smokers in this stratum is increased by almost 500 per
100,000 compared with lifetime nonsmokers, whereas
work in one of the included occupations increases the
annual risk of bladder cancer by nearly 300 per 100,000.
Thus, the annual risk for an occupationally exposed
heavy smoker is estimated to be about 800 per 100,000
higher than for an unexposed man who never smoked.
The odds ratio estimates from Model 3 are 2.2 for heavy
smoking and 1.7 for occupational exposure, respectively.
By adding occupation to a model with only smoking, the
deviance changes by 14.8 and 15.8 in the risk-difference
and log-odds models, respectively. The baseline models
have the same deviance, so the difference in deviances
between the two models is only 1.0, and the data do not
provide a firm basis for choosing between them. Even
though the deviances are similar, some of the estimated
differences in exposure-specific risk (Table 6) can be
substantial: up to 15% for heavy smokers who are not
occupationally exposed.

Smoking and
Occupation a* B* B* Bs* v*

Estimates -5.80 0.23 0.39 0.77 0.55
Standard errorst 0.16 0.17 031 0.20 0.14
QOdds ratios 1.3 1.5 2.2 1.7

* As defined in the text.
T Of the log-odds ratio.

Discussion

[ have shown that a case-control study always can be
viewed, and sometimes can be analyzed, as a cohort
study with missing data. When a case-control study is
appropriately designed and implemented, it parallels a
hypothetical cohort study performed in the same setting,
because the data not collected in the case-control study
are missing by design and missing at random. When the
study is poorly designed or implemented, the data are not
missing at random, and the validity of standard analyses,
as well as those explicitly based on the missing-at-ran-
dom assumptions, would be questionable.

EFFICIENCY OF ANALYSIS

Even though the analysis illustrated here incorporates
the crude rate of disease, it does not provide more
efficient inference on the odds ratio,'® which depends on
proportions rather than absolute numbers. Thus, the
odds ratio estimates for smoking and occupation and
their standard errors shown in Table 4 are identical to
those obtained from ordinary logistic regression analysis,
as the reader can verify.

CONTROL aND CASE SELECTION

The missing-data viewpoint provides an attractive for-
mal statistical framework for discussing practical prob-
lems in control selection. The two most common prob-
lems,?? failure to obtain a random sample from the study

TABLE 6. Fitted Probabilities (x 10°) from Models of
Annual Risk of Bladder Cancer for White Men Age 65-79
Years in New Jersey, from National Bladder Cancer Study
Data’*35

Covariate Level Model
TABLE 4. Odds-Difference Estimates (X 10°) of Baseline Smoking and
Risks and of Risk Differences for Annual Risk of Bladder Occupation
Cancer for White Men Age 65-79 Years in New Jersey, from Occupational Rick
National Bladder Cancer Study Data**?* Smoking Exposure Smoking  Difference  Logistic
o B* B B oy Never No 416. 271 304.
p—T—— ‘ : : : Never Yes 416, 563. 577.
moking only
Estimates 418. 118, 233. 532, Former o 2 o &o.
Standard errors 55. 76. 180. 135. ormer es : : :
. . Light No 647. 446. 448.
Smoking and occupation R
Estimates 272, 100, 171 493. 295 Light Yes 647. 138. 174.
Standard errors 51. 75. 176. 139. 75. Heavy No 941. 758. 652.
Heavy Yes 941, 1049. 1126.

* As defined in the text.
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base, particularly when there is no roster available, and
refusal to participate, can make the missing-at-random
assumption tenuous, even for case-control studies that
are claimed to be population based.

Case ascertainment can be as troubling as control
selection. Nonmultiplicative risk models (links other
than logistic and logarithmic for odds ratio or risk ratio
parameters, respectively?®) require complete case identi-
fication; for logistic risk models, cases missing at random
will have a slight effect on estimates of the effects of
covariates to the extent that missed cases contaminate
the count of the nondiseased. But under an assumption
of missingness at random, unidentified cases result in a
proportional downward bias in estimates of rates of dis-
ease, even for multiplicative models. Even if missingness
of cases is unrelated to covariates, estimates of risk
difference will also be proportionally reduced. Note that,
at least for cancer, the cases available to the study are
often identified through a registry such as SEER and
would be the basis of the numerator for calculation of
reported incidence rates. Thus, any inaccuracies in the
population counts will also manifest themselves as errors
in vital statistics rates and as bias in estimates of abso-
lute, but not relative, risk; in addition, there will be bias
in estimates of parameters of exposure effects when using
other links. Thus, if there was underidentification of
cases unrelated to exposure, the estimates of annual risk
in Table 6 will be biased downward by a fixed fraction.

Identified cases for whom covariates are not collected,
possibly because of death before interview or exclusion
due to lack of histologic confirmation, can lead to vio-
lation of the missing-at-random assumption if their ex-
posure distribution is different from that of other cases.
For example, patients seen at rural primary care hospitals
may be less likely to have a work-up including histology
than patients at an urban tertiary care hospital. The
missing-at-random assumption may then be violated in
an occupational study.!

Risk-DIFFERENCE AND OTHER NONLOGISTIC MODELS

This is, I believe, the first time that the parameters of a
multivariate risk difference or, in fact, any multivariate
model outside of the class of multiplicative intercept
models'®? have been obtained from a case-control
study. The missing-data approach offers a major advan-
tage by allowing estimation of absolute risk and risk-
difference parameters from a case-control study when
the total number of subjects at risk is available. These
parameters measure units of risk within a time period
and, therefore, will often measure impact on public
health far better than unitless ratio parameters. Use of
risk-difference estimates would illuminate rather than
obscure the difference in importance between control of
an exposure with a relative risk of 3 for a rare cancer and
one with a relative risk of 3 for coronary heart disease.
Furthermore, risk models with other links can be ex-
>lored; for example, Weinberg®® has suggested using the
og-complement link to obtain a health ratio when assess-
ng independence among causal factors.
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The missing-at-random approach provides new oppor-
tunities for examining the joint effects of more than one
risk factor in case-control data. When multiple strata of
the bladder cancer dataset are considered, with vastly
different baseline incidence rates (data not shown), the
logistic maodel fits much better than the risk difference,
in keeping with the observation of Breslow and Day that
“the epidemiology of cancer . . . provides empirical rea-
sons for choosing relative risk as the natural measure of
cancer and exposure.”?% Nonetheless, other measures
of association may be appropriate for other diseases, and
there may be situations in which an alternative form of
model of joint effects is appropriate, even for some sites
of cancer. Although one could employ software such as
Egret (Statistics and Epidemiology Research Corpora-
tion, Seattle, WA) or Epicure (Hirosoft International
Corporation, Seattle, WA) to compare multiplicative
and additive relative risk models of the joint effects of
two exposures, the missing-at-random approach offers a
much broader class of options.

When the outcome is rare, use of the odds-difference
as an approximation for the risk difference offers the
simplest approach. Software for fitting generalized linear
models, as in GLIM (Numerical Algorithms Group, Ox-
ford, England) or SAS (SAS Institute, Cary, NC), is
required. Use of an odds, identity, or other nonlogistic
link with binomial data, however, can cause computing
and inference problems when the fitted value of each
probability is not guaranteed to lie between 0 and 1.1920

In multiplicative intercept models, a computational
simplification arises since the sampling fractions for
cases and controls can act as expansion estimators ap-
plied, respectively, to the numerator p and the denom-
inator I — p of the odds. The computation of maximum
likelihood estimates for models outside the multiplica-
tive intercept class is nontrivial and tequires special
software even with discrete covariates. There are usually
many nuisance parameters. Applications with more than
one stratum and with continuous covariates will involve
challenging computing problems even as the theoretical
problems are solved. Use of pseudo-likelihood estimates,
which are computable using software for generalized
linear models,*® will avoid the problem of nuisance
parameters but not of restricted fitted probabilities. Nev-
ertheless, calculations beyond standard computer output
are required to obtain confidence intervals when using

pseudo-likelihood.

OTHER APPLICATIONS OF THE MISSING-DATA APPROACH
IN CaSe-CONTROL STUDIES

The concept of data missing by design has been ex-
tended to more complex case-control sampling de-
signs. %37 In frequency matching, two-stage de-
signs,'>192038-90 and the partial questionnaire design,”
some variables are not collected from a subset of cases
and controls, determined randomly and perhaps depend-
ing on the level of a variable that has been collected on
everyone. Again, the data are missing by design, and the
missing-at-random assumption will hold in theory. Here,
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a roster of subjects in the sampling frame is available, so
the missing-at-random assumption is likely to hold in
practice as well. Methods of analysis for two-stage de-
signs can accommodate matching on a variable collected

only from potential cases and controls,?**! as when "

choosing subjects for assessment of residential radon
exposure on the basis of smoking information; matching
on a variable that is known for everyone in the study
base (typically, variables such as age, race, sex, and
region) can be handled by forming strata based on these
variables and applying the methods developed in this
paper.

Nested case-control and case-cohort studies can also
be thought of as full cohort studies with missing data.
The likelihoods used for cohort, case-control, and case-
cohort studies are identical except for the composition
of the comparison sets for the cases*; the comparison
sets for each design constitute a random sample of the
risk set in the corresponding cohort study.*? This paral-
lelism suggests that decisions about exclusion of subjects
and calculation of time-dependent covariates for nested
case-control and case-cohort studies should be made
exactly as for the cohort study.

VALIDITY OF CASE-CONTROL STUDY DESIGN

Finally, the missing-data framework makes explicit the
relation between a case-control study and its underlying
cohort or study base. This structure demonstrates simply,
even elegantly, the theoretical validity of the case-con-
trol design. Furthermore, it reveals the conditions criti-
cal to translating validity in theory into validity in
practice. The missing-at-random perspective emphasizes
that the design, implementation, and criticism of case-
control studies ought to focus on case ascertainment,
control selection, and data quality rather than on a
misguided characterization of the case-control study as
intrinsically unreliable.
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